Übung
$\frac{2x^3-x^2-19x+15}{x-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^3-x^2-19x+15$ durch $x-3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-3;}{\phantom{;}2x^{2}+5x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-3\overline{\smash{)}\phantom{;}2x^{3}-x^{2}-19x\phantom{;}+15\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-3;}\underline{-2x^{3}+6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{3}+6x^{2};}\phantom{;}5x^{2}-19x\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n;}\underline{-5x^{2}+15x\phantom{;}\phantom{-;x^n}}\\\phantom{;-5x^{2}+15x\phantom{;}-;x^n;}-4x\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}-12\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}4x\phantom{;}-12\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}3\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}+5x-4+\frac{3}{x-3}$
Endgültige Antwort auf das Problem
$2x^{2}+5x-4+\frac{3}{x-3}$