Übung
$\frac{2x^3-6x^2-7}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^3-6x^2-7$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}2x^{2}-12x\phantom{;}+36\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}2x^{3}-6x^{2}\phantom{-;x^n}-7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-2x^{3}-6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{3}-6x^{2};}-12x^{2}\phantom{-;x^n}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}12x^{2}+36x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}12x^{2}+36x\phantom{;}-;x^n;}\phantom{;}36x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-36x\phantom{;}-108\phantom{;}\phantom{;}}\\\phantom{;;-36x\phantom{;}-108\phantom{;}\phantom{;}-;x^n-;x^n;}-115\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}-12x+36+\frac{-115}{x+3}$
Endgültige Antwort auf das Problem
$2x^{2}-12x+36+\frac{-115}{x+3}$