Übung
$\frac{243x^{5}+32}{3x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $243x^5+32$ durch $3x+2$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}+2;}{\phantom{;}81x^{4}-54x^{3}+36x^{2}-24x\phantom{;}+16\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}+2\overline{\smash{)}\phantom{;}243x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}+2;}\underline{-243x^{5}-162x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-243x^{5}-162x^{4};}-162x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n;}\underline{\phantom{;}162x^{4}+108x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}162x^{4}+108x^{3}-;x^n;}\phantom{;}108x^{3}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n-;x^n;}\underline{-108x^{3}-72x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-108x^{3}-72x^{2}-;x^n-;x^n;}-72x^{2}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}72x^{2}+48x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}72x^{2}+48x\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}48x\phantom{;}+32\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n-;x^n-;x^n-;x^n;}\underline{-48x\phantom{;}-32\phantom{;}\phantom{;}}\\\phantom{;;;;-48x\phantom{;}-32\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n;}\\\end{array}$
$81x^{4}-54x^{3}+36x^{2}-24x+16$
Endgültige Antwort auf das Problem
$81x^{4}-54x^{3}+36x^{2}-24x+16$