Übung
$\frac{1-sin\left(x\right)}{tan\left(x\right)sec\left(x\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (1-sin(x))/(tan(x)sec(x)). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\sec\left(x\right), b=\sin\left(x\right) und c=\cos\left(x\right). Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=1-\sin\left(x\right), b=\sin\left(x\right)\sec\left(x\right), c=\cos\left(x\right), a/b/c=\frac{1-\sin\left(x\right)}{\frac{\sin\left(x\right)\sec\left(x\right)}{\cos\left(x\right)}} und b/c=\frac{\sin\left(x\right)\sec\left(x\right)}{\cos\left(x\right)}. Applying the trigonometric identity: \sin\left(\theta \right)\sec\left(\theta \right) = \tan\left(\theta \right).
(1-sin(x))/(tan(x)sec(x))
Endgültige Antwort auf das Problem
$\frac{\cos\left(x\right)^2\left(1-\sin\left(x\right)\right)}{\sin\left(x\right)}$