Übung
$\frac{\left(x^4-2x^3-7x^2+18x-18\right)}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-2x^3-7x^2+18x-18$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{3}-3x^{2}-4x\phantom{;}+22\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{4}-2x^{3}-7x^{2}+18x\phantom{;}-18\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{4}-x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-x^{3};}-3x^{3}-7x^{2}+18x\phantom{;}-18\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}3x^{3}+3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}3x^{3}+3x^{2}-;x^n;}-4x^{2}+18x\phantom{;}-18\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}4x^{2}+4x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}4x^{2}+4x\phantom{;}-;x^n-;x^n;}\phantom{;}22x\phantom{;}-18\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{-22x\phantom{;}-22\phantom{;}\phantom{;}}\\\phantom{;;;-22x\phantom{;}-22\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-40\phantom{;}\phantom{;}\\\end{array}$
$x^{3}-3x^{2}-4x+22+\frac{-40}{x+1}$
Endgültige Antwort auf das Problem
$x^{3}-3x^{2}-4x+22+\frac{-40}{x+1}$