Übung
$\frac{\left(x^{n-2}\right)^{3}x^{n+4}}{\left(x^{2}\right)^{n}}$
Schritt-für-Schritt-Lösung
Learn how to solve faktorisierung problems step by step online. (x^(n-2)^3x^(n+4))/(x^2^n). Simplify \left(x^2\right)^n using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals n. Simplify \left(x^{\left(n-2\right)}\right)^3 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals n-2 and n equals 3. Wenden Sie die Formel an: x^mx^n=x^{\left(m+n\right)}, wobei m=3\left(n-2\right) und n=n+4. Wenden Sie die Formel an: \frac{a^m}{a^n}=a^{\left(m-n\right)}, wobei a^n=x^{2n}, a^m=x^{\left(3\left(n-2\right)+n+4\right)}, a=x, a^m/a^n=\frac{x^{\left(3\left(n-2\right)+n+4\right)}}{x^{2n}}, m=3\left(n-2\right)+n+4 und n=2n.
(x^(n-2)^3x^(n+4))/(x^2^n)
Endgültige Antwort auf das Problem
$x^{\left(2n-2\right)}$