Übung
$\frac{\left(9v^3-56v^2+14v+49\right)}{\left(9v+7\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $9v^3-56v^2+14v+49$ durch $9v+7$
$\begin{array}{l}\phantom{\phantom{;}9v\phantom{;}+7;}{\phantom{;}v^{2}-7v\phantom{;}+7\phantom{;}\phantom{;}}\\\phantom{;}9v\phantom{;}+7\overline{\smash{)}\phantom{;}9v^{3}-56v^{2}+14v\phantom{;}+49\phantom{;}\phantom{;}}\\\phantom{\phantom{;}9v\phantom{;}+7;}\underline{-9v^{3}-7v^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-9v^{3}-7v^{2};}-63v^{2}+14v\phantom{;}+49\phantom{;}\phantom{;}\\\phantom{\phantom{;}9v\phantom{;}+7-;x^n;}\underline{\phantom{;}63v^{2}+49v\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}63v^{2}+49v\phantom{;}-;x^n;}\phantom{;}63v\phantom{;}+49\phantom{;}\phantom{;}\\\phantom{\phantom{;}9v\phantom{;}+7-;x^n-;x^n;}\underline{-63v\phantom{;}-49\phantom{;}\phantom{;}}\\\phantom{;;-63v\phantom{;}-49\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$v^{2}-7v+7$