Übung
$\frac{\left(6x^3-3x^2+7x-10\right)}{2x-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3-3x^2+7x-10$ durch $2x-3$
$\begin{array}{l}\phantom{\phantom{;}2x\phantom{;}-3;}{\phantom{;}3x^{2}+3x\phantom{;}+8\phantom{;}\phantom{;}}\\\phantom{;}2x\phantom{;}-3\overline{\smash{)}\phantom{;}6x^{3}-3x^{2}+7x\phantom{;}-10\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x\phantom{;}-3;}\underline{-6x^{3}+9x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}+9x^{2};}\phantom{;}6x^{2}+7x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}-3-;x^n;}\underline{-6x^{2}+9x\phantom{;}\phantom{-;x^n}}\\\phantom{;-6x^{2}+9x\phantom{;}-;x^n;}\phantom{;}16x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}-3-;x^n-;x^n;}\underline{-16x\phantom{;}+24\phantom{;}\phantom{;}}\\\phantom{;;-16x\phantom{;}+24\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}14\phantom{;}\phantom{;}\\\end{array}$
$3x^{2}+3x+8+\frac{14}{2x-3}$
Endgültige Antwort auf das Problem
$3x^{2}+3x+8+\frac{14}{2x-3}$