Übung
$\frac{\left(6x^3-17x^2+15x-8\right)}{\left(3x-4\right)}\:$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3-17x^2+15x-8$ durch $3x-4$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}-4;}{\phantom{;}2x^{2}-3x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}-4\overline{\smash{)}\phantom{;}6x^{3}-17x^{2}+15x\phantom{;}-8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}-4;}\underline{-6x^{3}+8x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}+8x^{2};}-9x^{2}+15x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}-4-;x^n;}\underline{\phantom{;}9x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}9x^{2}-12x\phantom{;}-;x^n;}\phantom{;}3x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}-4-;x^n-;x^n;}\underline{-3x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;-3x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n;}-4\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}-3x+1+\frac{-4}{3x-4}$
Endgültige Antwort auf das Problem
$2x^{2}-3x+1+\frac{-4}{3x-4}$