Übung
$\frac{\left(4x^2+2x+3x^3-3\right)}{\left(x+1\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4x^2+2x+3x^3-3$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}3x^{2}+x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}3x^{3}+4x^{2}+2x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-3x^{3}-3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{3}-3x^{2};}\phantom{;}x^{2}+2x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{-x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}-x\phantom{;}-;x^n;}\phantom{;}x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;;-x\phantom{;}-1\phantom{;}\phantom{;}-;x^n-;x^n;}-4\phantom{;}\phantom{;}\\\end{array}$
$3x^{2}+x+1+\frac{-4}{x+1}$
Endgültige Antwort auf das Problem
$3x^{2}+x+1+\frac{-4}{x+1}$