Übung
$\frac{\left(3x^4-3x^2+x-5\right)}{\left(x+2\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^4-3x^2+x-5$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}3x^{3}-6x^{2}+9x\phantom{;}-17\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}3x^{4}\phantom{-;x^n}-3x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-3x^{4}-6x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{4}-6x^{3};}-6x^{3}-3x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}6x^{3}+12x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}6x^{3}+12x^{2}-;x^n;}\phantom{;}9x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-9x^{2}-18x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-9x^{2}-18x\phantom{;}-;x^n-;x^n;}-17x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}17x\phantom{;}+34\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}17x\phantom{;}+34\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}29\phantom{;}\phantom{;}\\\end{array}$
$3x^{3}-6x^{2}+9x-17+\frac{29}{x+2}$
Endgültige Antwort auf das Problem
$3x^{3}-6x^{2}+9x-17+\frac{29}{x+2}$