Übung
$\frac{\left(3x^4-2x^3+3x-5\right)}{x-1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^4-2x^3+3x-5$ durch $x-1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-1;}{\phantom{;}3x^{3}+x^{2}+x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-1\overline{\smash{)}\phantom{;}3x^{4}-2x^{3}\phantom{-;x^n}+3x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-1;}\underline{-3x^{4}+3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{4}+3x^{3};}\phantom{;}x^{3}\phantom{-;x^n}+3x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n;}\underline{-x^{3}+x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-x^{3}+x^{2}-;x^n;}\phantom{;}x^{2}+3x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n-;x^n;}\underline{-x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-x^{2}+x\phantom{;}-;x^n-;x^n;}\phantom{;}4x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n-;x^n-;x^n;}\underline{-4x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;;-4x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-1\phantom{;}\phantom{;}\\\end{array}$
$3x^{3}+x^{2}+x+4+\frac{-1}{x-1}$
Endgültige Antwort auf das Problem
$3x^{3}+x^{2}+x+4+\frac{-1}{x-1}$