Übung
$\frac{\left(3x^3-7x^2+6x+8\right)}{\left(x-1\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^3-7x^2+6x+8$ durch $x-1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-1;}{\phantom{;}3x^{2}-4x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-1\overline{\smash{)}\phantom{;}3x^{3}-7x^{2}+6x\phantom{;}+8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-1;}\underline{-3x^{3}+3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{3}+3x^{2};}-4x^{2}+6x\phantom{;}+8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n;}\underline{\phantom{;}4x^{2}-4x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{2}-4x\phantom{;}-;x^n;}\phantom{;}2x\phantom{;}+8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n-;x^n;}\underline{-2x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;;-2x\phantom{;}+2\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}10\phantom{;}\phantom{;}\\\end{array}$
$3x^{2}-4x+2+\frac{10}{x-1}$
Endgültige Antwort auf das Problem
$3x^{2}-4x+2+\frac{10}{x-1}$