Übung
$\frac{\left(-6x^4+4x^3+3x^2+9x+9\right)}{\left(-4+x\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-6x^4+4x^3+3x^2+9x+9$ durch $-4+x$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-4;}{-6x^{3}-20x^{2}-77x\phantom{;}-299\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-4\overline{\smash{)}-6x^{4}+4x^{3}+3x^{2}+9x\phantom{;}+9\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-4;}\underline{\phantom{;}6x^{4}-24x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}6x^{4}-24x^{3};}-20x^{3}+3x^{2}+9x\phantom{;}+9\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n;}\underline{\phantom{;}20x^{3}-80x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}20x^{3}-80x^{2}-;x^n;}-77x^{2}+9x\phantom{;}+9\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n;}\underline{\phantom{;}77x^{2}-308x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}77x^{2}-308x\phantom{;}-;x^n-;x^n;}-299x\phantom{;}+9\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n;}\underline{\phantom{;}299x\phantom{;}-1196\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}299x\phantom{;}-1196\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-1187\phantom{;}\phantom{;}\\\end{array}$
$-6x^{3}-20x^{2}-77x-299+\frac{-1187}{-4+x}$
Endgültige Antwort auf das Problem
$-6x^{3}-20x^{2}-77x-299+\frac{-1187}{-4+x}$