Übung
$\frac{\left(-4x+9x^3-9x^2-4\right)}{\left(x+3\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-4x+9x^3-9x^2-4$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}9x^{2}-36x\phantom{;}+104\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}9x^{3}-9x^{2}-4x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-9x^{3}-27x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-9x^{3}-27x^{2};}-36x^{2}-4x\phantom{;}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}36x^{2}+108x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}36x^{2}+108x\phantom{;}-;x^n;}\phantom{;}104x\phantom{;}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-104x\phantom{;}-312\phantom{;}\phantom{;}}\\\phantom{;;-104x\phantom{;}-312\phantom{;}\phantom{;}-;x^n-;x^n;}-316\phantom{;}\phantom{;}\\\end{array}$
$9x^{2}-36x+104+\frac{-316}{x+3}$
Endgültige Antwort auf das Problem
$9x^{2}-36x+104+\frac{-316}{x+3}$