👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Quadrat Eines Trinomials

Quadrat eines Trinomials Rechner

Mit unserem Quadrat eines Trinomials Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of square of a trinomial. This solution was automatically generated by our smart calculator:

$h\left(x\right)=\left(3x^2-2x+1\right)^2$
2

Expand the trinomial using the formula $\left(a+b+c\right)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2+2\cdot 3\cdot -2x^2x+2\cdot 3\cdot 1x^2+2\cdot -2\cdot 1x$
3

Any expression multiplied by $1$ is equal to itself

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2+2\cdot 3\cdot -2x^2x+2\cdot 3x^2+2\cdot -2\cdot 1x$
4

Any expression multiplied by $1$ is equal to itself

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2+2\cdot 3\cdot -2x^2x+2\cdot 3x^2+2\cdot -2x$
5

Multiply $2$ times $3$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2+6\cdot -2x^2x+2\cdot 3x^2+2\cdot -2x$
6

Multiply $6$ times $-2$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2-12x^2x+2\cdot 3x^2+2\cdot -2x$
7

Multiply $2$ times $3$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2-12x^2x+6x^2+2\cdot -2x$
8

Multiply $2$ times $-2$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1^2-12x^2x+6x^2-4x$
9

Calculate the power $1^2$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1-12x^2x+6x^2-4x$
10

When multiplying exponents with same base you can add the exponents: $-12x^2x$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1-12x^{2+1}+6x^2-4x$
11

Add the values $2$ and $1$

$h\left(x\right)=\left(3x^2\right)^2+\left(-2x\right)^2+1-12x^{3}+6x^2-4x$
12

The power of a product is equal to the product of it's factors raised to the same power

$h\left(x\right)=3^2\left(x^2\right)^2+\left(-2x\right)^2+1-12x^{3}+6x^2-4x$
13

Calculate the power $3^2$

$h\left(x\right)=9\left(x^2\right)^2+\left(-2x\right)^2+1-12x^{3}+6x^2-4x$
14

Simplify $\left(x^2\right)^2$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $2$

$9x^{2\cdot 2}$
15

Multiply $2$ times $2$

$9x^{4}$
16

Multiply $2$ times $2$

$h\left(x\right)=9x^{4}+\left(-2x\right)^2+1-12x^{3}+6x^2-4x$

Endgültige Antwort auf das Problem

$h\left(x\right)=9x^{4}+\left(-2x\right)^2+1-12x^{3}+6x^2-4x$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!