👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Physik

Physik Rechner

Mit unserem Physik Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of physics. This solution was automatically generated by our smart calculator:

With what speed should a stone be thrown upward so that it reaches a maximum height of 3.2 m?
2

What do we already know? We know the values for acceleration ($a$), velocity ($v$), distance ($y$), height ($y_0$) and want to calculate the value of velocity ($v_0$)

$a=9.81\:m/s2,\:\: v=0,\:\: y=3.2\:m,\:\: y_0=0,\:\: v_0=\:?$
3

According to the initial data we have about the problem, the following formula would be the most useful to find the unknown ($v_0$) that we are looking for. We need to solve the equation below for $v_0$

$v^2=v_0^2-2a\left(y- y_0\right)$
4

We substitute the data of the problem in the formula and proceed to simplify the equation

$0^2=v_0^2-2\cdot 9.81\left(3.2- 0\right)$
5

Add the values $3.2$ and $0$

$0^2=v_0^2-2\cdot 9.81\cdot 3.2$
6

Multiply $-2$ times $9.81$

$0^2=v_0^2-19.62\cdot 3.2$
7

Multiply $-19.62$ times $3.2$

$0^2=v_0^2-62.784$
8

Calculate the power $0^2$

$0=v_0^2-62.784$
9

Rearrange the equation

$v_0^2-62.784=0$
10

We need to isolate the dependent variable $v_0$, we can do that by simultaneously subtracting $-62.784$ from both sides of the equation

$v_0^2=62.784$

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{2}$

$\sqrt{v_0^2}=\sqrt{62.784}$

Cancel exponents $2$ and $1$

$v_0=\sqrt{62.784}$

Calculate the power $\sqrt{62.784}$

$v_0=7.9236$
11

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{2}$

$v_0=7.9236$
12

The complete answer is

The speed of the stone is $7.9236355$ m/s

Endgültige Antwort auf das Problem

The speed of the stone is $7.9236355$ m/s

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!