👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Partielle Fraktionszersetzung

Partielle Fraktionszersetzung Rechner

Mit unserem Partielle Fraktionszersetzung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of partial fraction decomposition. This solution was automatically generated by our smart calculator:

$\frac{1}{x^2+2x-3}$
2

Factor the trinomial $x^2+2x-3$ finding two numbers that multiply to form $-3$ and added form $2$

$\begin{matrix}\left(-1\right)\left(3\right)=-3\\ \left(-1\right)+\left(3\right)=2\end{matrix}$
3

Rewrite the polynomial as the product of two binomials consisting of the sum of the variable and the found values

$\frac{1}{\left(x-1\right)\left(x+3\right)}$
4

Rewrite the fraction $\frac{1}{\left(x-1\right)\left(x+3\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{\left(x-1\right)\left(x+3\right)}=\frac{A}{x-1}+\frac{B}{x+3}$
5

Find the values for the unknown coefficients: $A, B$. The first step is to multiply both sides of the equation from the previous step by $\left(x-1\right)\left(x+3\right)$

$1=\left(x-1\right)\left(x+3\right)\left(\frac{A}{x-1}+\frac{B}{x+3}\right)$
6

Multiplying polynomials

$1=\frac{\left(x-1\right)\left(x+3\right)A}{x-1}+\frac{\left(x-1\right)\left(x+3\right)B}{x+3}$
7

Simplifying

$1=\left(x+3\right)A+\left(x-1\right)B$
8

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}1=4A&\:\:\:\:\:\:\:(x=1) \\ 1=2A-2B&\:\:\:\:\:\:\:(x=-1)\end{matrix}$
9

Proceed to solve the system of linear equations

$\begin{matrix}4A & + & 0B & =1 \\ 2A & - & 2B & =1\end{matrix}$
10

Rewrite as a coefficient matrix

$\left(\begin{matrix}4 & 0 & 1 \\ 2 & -2 & 1\end{matrix}\right)$
11

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & \frac{1}{4} \\ 0 & 1 & -\frac{1}{4}\end{matrix}\right)$
12

The fraction $\frac{1}{\left(x-1\right)\left(x+3\right)}$ in decomposed fractions equals

$\frac{1}{4\left(x-1\right)}+\frac{-1}{4\left(x+3\right)}$

Endgültige Antwort auf das Problem

$\frac{1}{4\left(x-1\right)}+\frac{-1}{4\left(x+3\right)}$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!