👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Kreuzmultiplikation Von Brüchen

Kreuzmultiplikation von Brüchen Rechner

Mit unserem Kreuzmultiplikation von Brüchen Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of fraction cross multiplication. This solution was automatically generated by our smart calculator:

$\log_x\left(81\right)=4$
2

Change the logarithm to base $x$ applying the change of base formula for logarithms: $\log_b(a)=\frac{\log_x(a)}{\log_x(b)}$

$\frac{\log_{81}\left(81\right)}{\log_{81}\left(x\right)}=4$
3

If the argument of the logarithm (inside the parenthesis) and the base are equal, then the logarithm equals $1$

$\frac{1}{\log_{81}\left(x\right)}=4$
4

Take the reciprocal of both sides of the equation

$\frac{\log_{81}\left(x\right)}{1}=\frac{1}{4}$
5

Any expression divided by one ($1$) is equal to that same expression

$\log_{81}\left(x\right)=\frac{1}{4}$
6

Change the logarithm to base $10$ applying the change of base formula for logarithms: $\log_b(a)=\frac{\log_{10}(a)}{\log_{10}(b)}$. Since $\log_{10}(b)=\log(b)$, we don't need to write the $10$ as base

$\frac{\log \left(x\right)}{\log \left(81\right)}=\frac{1}{4}$
7

Apply fraction cross-multiplication

$4\log \left(x\right)=\log \left(81\right)$
8

Apply the formula: $a\log_{b}\left(x\right)$$=\log_{b}\left(x^a\right)$, where $a=4$ and $b=10$

$\log \left(x^4\right)=\log \left(81\right)$
9

For two logarithms of the same base to be equal, their arguments must be equal. In other words, if $\log(a)=\log(b)$ then $a$ must equal $b$

$x^4=81$
10

Removing the variable's exponent

$\sqrt[4]{x^4}=\pm \sqrt[4]{81}$
11

Cancel exponents $4$ and $1$

$x=\pm \sqrt[4]{81}$
12

Calculate the power $\sqrt[4]{81}$

$x=\pm 3$
13

As in the equation we have the sign $\pm$, this produces two identical equations that differ in the sign of the term $3$. We write and solve both equations, one taking the positive sign, and the other taking the negative sign

$x=3,\:x=-3$
14

Combining all solutions, the $2$ solutions of the equation are

$x=3,\:x=-3$

Verify that the solutions obtained are valid in the initial equation

15

The valid solutions to the logarithmic equation are the ones that, when replaced in the original equation, don't result in any logarithm of negative numbers or zero, since in those cases the logarithm does not exist

$x=3,\:x=-3$

Endgültige Antwort auf das Problem

$x=3,\:x=-3$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!