👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Free Fall

Free Fall Rechner

Mit unserem Free Fall Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of free fall. This solution was automatically generated by our smart calculator:

A ball is dropped from the highest part of a building that has a height of 20 m. What time does it take to reach the ground?
2

What do we already know? We know the values for acceleration ($a$), initial velocity ($v_0$), distance ($y$), height ($y_0$) and want to calculate the value of time ($t$)

$a=-9.81\:m/s2,\:\: v_0=0,\:\: y=20\:m,\:\: y_0=0,\:\: t=\:?$
3

According to the initial data we have about the problem, the following formula would be the most useful to find the unknown ($t$) that we are looking for. We need to solve the equation below for $t$

$y=y_0+v_0t- \left(\frac{1}{2}\right)at^2$
4

We substitute the data of the problem in the formula and proceed to simplify the equation

$20=0+0t- -9.81\cdot \left(\frac{1}{2}\right)t^2$

Multiply the fraction and term in $9.81\cdot \left(\frac{1}{2}\right)t^2$

$20=0+0t+\frac{9.81\cdot 1}{2}t^2$

Multiply $9.81$ times $1$

$20=0+0t+\frac{9.81}{2}t^2$
5

Multiply the fraction and term in $9.81\cdot \left(\frac{1}{2}\right)t^2$

$20=0+0t+\frac{9.81}{2}t^2$
6

Any expression multiplied by $0$ is equal to $0$

$20=0+\frac{9.81}{2}t^2$
7

$x+0=x$, where $x$ is any expression

$20=\frac{9.81}{2}t^2$
8

Rearrange the equation

$\frac{9.81}{2}t^2=20$

Multiply both sides of the equation by $2$

$9.81t^2=20\cdot 2$

Multiply $20$ times $2$

$9.81t^2=40$
9

Multiply both sides of the equation by $2$

$9.81t^2=40$

Divide both sides of the equation by $9.81$

$\frac{9.81t^2}{9.81}=\frac{40}{9.81}$

Simplify the fraction $\frac{9.81t^2}{9.81}$ by $9.81$

$t^2=\frac{40}{9.81}$
10

Divide both sides of the equation by $9.81$

$t^2=\frac{40}{9.81}$

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{2}$

$\sqrt{t^2}=\sqrt{\frac{40}{9.81}}$

Cancel exponents $2$ and $1$

$t=\sqrt{\frac{40}{9.81}}$
11

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{2}$

$t=\sqrt{\frac{40}{9.81}}$
12

The power of a quotient is equal to the quotient of the power of the numerator and denominator: $\displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$

$t=\frac{\sqrt{40}}{\sqrt{9.81}}$
13

The complete answer is

The time of the ball is $\frac{\sqrt{40}}{\sqrt{9.81}}$ s

Endgültige Antwort auf das Problem

The time of the ball is $\frac{\sqrt{40}}{\sqrt{9.81}}$ s

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!