👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Free Fall

Free Fall Rechner

Mit unserem Free Fall Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Geben Sie ein mathematisches Problem oder eine Frage ein
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of free fall. This solution was automatically generated by our smart calculator:

A ball is dropped from the highest part of a building that has a height of 20 m. What time does it take to reach the ground?
2

What do we already know? We know the values for acceleration (aa), initial velocity (v0v_0), distance (yy), height (y0y_0) and want to calculate the value of time (tt)

a=9.81m/s2,  v0=0,  y=20m,  y0=0,  t=?a=-9.81\:m/s2,\:\: v_0=0,\:\: y=20\:m,\:\: y_0=0,\:\: t=\:?
3

According to the initial data we have about the problem, the following formula would be the most useful to find the unknown (tt) that we are looking for. We need to solve the equation below for tt

y=y0+v0t(12)at2y=y_0+v_0t- \left(\frac{1}{2}\right)at^2
4

We substitute the data of the problem in the formula and proceed to simplify the equation

20=0+0t9.81(12)t220=0+0t- -9.81\cdot \left(\frac{1}{2}\right)t^2

Multiply the fraction and term in 9.81(12)t29.81\cdot \left(\frac{1}{2}\right)t^2

20=0+0t+9.8112t220=0+0t+\frac{9.81\cdot 1}{2}t^2

Multiply 9.819.81 times 11

20=0+0t+9.812t220=0+0t+\frac{9.81}{2}t^2
5

Multiply the fraction and term in 9.81(12)t29.81\cdot \left(\frac{1}{2}\right)t^2

20=0+0t+9.812t220=0+0t+\frac{9.81}{2}t^2
6

Any expression multiplied by 00 is equal to 00

20=0+9.812t220=0+\frac{9.81}{2}t^2
7

x+0=xx+0=x, where xx is any expression

20=9.812t220=\frac{9.81}{2}t^2
8

Rearrange the equation

9.812t2=20\frac{9.81}{2}t^2=20

Multiply both sides of the equation by 22

9.81t2=2029.81t^2=20\cdot 2

Multiply 2020 times 22

9.81t2=409.81t^2=40
9

Multiply both sides of the equation by 22

9.81t2=409.81t^2=40

Divide both sides of the equation by 9.819.81

9.81t29.81=409.81\frac{9.81t^2}{9.81}=\frac{40}{9.81}

Simplify the fraction 9.81t29.81\frac{9.81t^2}{9.81} by 9.819.81

t2=409.81t^2=\frac{40}{9.81}
10

Divide both sides of the equation by 9.819.81

t2=409.81t^2=\frac{40}{9.81}

Removing the variable's exponent raising both sides of the equation to the power of 12\frac{1}{2}

t2=409.81\sqrt{t^2}=\sqrt{\frac{40}{9.81}}

Cancel exponents 22 and 11

t=409.81t=\sqrt{\frac{40}{9.81}}
11

Removing the variable's exponent raising both sides of the equation to the power of 12\frac{1}{2}

t=409.81t=\sqrt{\frac{40}{9.81}}
12

The power of a quotient is equal to the quotient of the power of the numerator and denominator: (ab)n=anbn\displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}

t=409.81t=\frac{\sqrt{40}}{\sqrt{9.81}}
13

The complete answer is

The time of the ball is 409.81\frac{\sqrt{40}}{\sqrt{9.81}} s

Endgültige Antwort auf das Problem

The time of the ball is 409.81\frac{\sqrt{40}}{\sqrt{9.81}} s

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!