👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Erweiterte Differenzierung

Erweiterte Differenzierung Rechner

Mit unserem Erweiterte Differenzierung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of advanced differentiation. This solution was automatically generated by our smart calculator:

$\frac{d}{dx}\left(cosh\:x\right)^{arccosh\:x}$
2

To derive the function $\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$, use the method of logarithmic differentiation. First, assign the function to $y$, then take the natural logarithm of both sides of the equation

$y=\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$
3

Apply natural logarithm to both sides of the equality

$\ln\left(y\right)=\ln\left(\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}\right)$
4

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\ln\left(y\right)=\mathrm{arccosh}\left(x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)$
5

Derive both sides of the equality with respect to $x$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)\right)$
6

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=\mathrm{arccosh}\left(x\right)$ and $g=\ln\left(\mathrm{cosh}\left(x\right)\right)$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{d}{dx}\left(\ln\left(\mathrm{cosh}\left(x\right)\right)\right)\mathrm{arccosh}\left(x\right)$

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
7

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
8

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
9

Taking the derivative of hyperbolic cosine

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(x\right)\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)$
10

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$
11

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$
12

Apply the trigonometric identity: $\frac{\mathrm{sinh}\left(\theta \right)}{\mathrm{cosh}\left(\theta \right)}$$=\mathrm{tanh}\left(\theta \right)$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
13

Apply the formula: $\mathrm{arccosh}\left(\theta \right)$$=\ln\left(\theta +\sqrt{\theta ^2-1}\right)$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\ln\left(x+\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
14

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\frac{d}{dx}\left(x+\sqrt{x^2-1}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{d}{dx}\left(\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
15

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{d}{dx}\left(\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{\frac{1}{2}-1}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Simplify the addition $\frac{1}{2}-1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{\frac{1-2}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Add the values $1$ and $-2$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
16

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the constant function ($-1$) is equal to zero

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
17

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x^{\left(2-1\right)}$

Subtract the values $2$ and $-1$

$2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$
18

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction and term in $2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{2\cdot 1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply $2$ times $1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{2}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Divide $2$ by $2$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+1\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
19

Multiply the fraction and term in $2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{1\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
20

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{\left(x^2-1\right)^{\left|-\frac{1}{2}\right|}}x$

Multiplying the fraction by $x$

$\frac{x}{\left(x^2-1\right)^{\left|-\frac{1}{2}\right|}}$
21

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{1}{\sqrt{x^2-1}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{1x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{1\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
22

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
23

Combine all terms into a single fraction with $\sqrt{x^2-1}$ as common denominator

$\frac{y^{\prime}}{y}=\frac{\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
24

Simplify the fraction $\frac{\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}$ by $x+\sqrt{x^2-1}$

$\frac{y^{\prime}}{y}=\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
25

Multiply both sides of the equation by $y$

$y^{\prime}=\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)y$
26

Substitute $y$ for the original function: $\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

$y^{\prime}=\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$
27

The derivative of the function results in

$\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

Endgültige Antwort auf das Problem

$\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!