👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Binomischer Lehrsatz

Binomischer Lehrsatz Rechner

Mit unserem Binomischer Lehrsatz Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

(x+3)5
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of binomial theorem. This solution was automatically generated by our smart calculator:

(x+3)5\left(x+3\right)^5
2

We can expand the expression (x+3)5\left(x+3\right)^5 using Newton's binomial theorem, which is a formula that allow us to find the expanded form of a binomial raised to a positive integer nn. The formula is as follows: (a±b)n=k=0n(nk)ankbk=(n0)an±(n1)an1b+(n2)an2b2±±(nn)bn\displaystyle(a\pm b)^n=\sum_{k=0}^{n}\left(\begin{matrix}n\\k\end{matrix}\right)a^{n-k}b^k=\left(\begin{matrix}n\\0\end{matrix}\right)a^n\pm\left(\begin{matrix}n\\1\end{matrix}\right)a^{n-1}b+\left(\begin{matrix}n\\2\end{matrix}\right)a^{n-2}b^2\pm\dots\pm\left(\begin{matrix}n\\n\end{matrix}\right)b^n. The number of terms resulting from the expansion always equals n+1n + 1. The coefficients (nk)\left(\begin{matrix}n\\k\end{matrix}\right) are combinatorial numbers which correspond to the nth row of the Tartaglia triangle (or Pascal's triangle). In the formula, we can observe that the exponent of aa decreases, from nn to 00, while the exponent of bb increases, from 00 to nn. If one of the binomial terms is negative, the positive and negative signs alternate.

(50)30x5+(51)31x4+(52)32x3+(53)33x2+(54)34x1+(55)35x0\left(\begin{matrix}5\\0\end{matrix}\right)\cdot 3^{0}x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
3

Calculate the power 303^{0}

1(50)x5+(51)31x4+(52)32x3+(53)33x2+(54)34x1+(55)35x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+\left(\begin{matrix}5\\1\end{matrix}\right)\cdot 3^{1}x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
4

Calculate the power 313^{1}

1(50)x5+3(51)x4+(52)32x3+(53)33x2+(54)34x1+(55)35x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+\left(\begin{matrix}5\\2\end{matrix}\right)\cdot 3^{2}x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
5

Calculate the power 323^{2}

1(50)x5+3(51)x4+9(52)x3+(53)33x2+(54)34x1+(55)35x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+\left(\begin{matrix}5\\3\end{matrix}\right)\cdot 3^{3}x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
6

Calculate the power 333^{3}

1(50)x5+3(51)x4+9(52)x3+27(53)x2+(54)34x1+(55)35x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+\left(\begin{matrix}5\\4\end{matrix}\right)\cdot 3^{4}x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
7

Calculate the power 343^{4}

1(50)x5+3(51)x4+9(52)x3+27(53)x2+81(54)x1+(55)35x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+81\left(\begin{matrix}5\\4\end{matrix}\right)x^{1}+\left(\begin{matrix}5\\5\end{matrix}\right)\cdot 3^{5}x^{0}
8

Calculate the power 353^{5}

1(50)x5+3(51)x4+9(52)x3+27(53)x2+81(54)x1+243(55)x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+81\left(\begin{matrix}5\\4\end{matrix}\right)x^{1}+243\left(\begin{matrix}5\\5\end{matrix}\right)x^{0}
9

Any expression to the power of 11 is equal to that same expression

1(50)x5+3(51)x4+9(52)x3+27(53)x2+81(54)x+243(55)x01\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+81\left(\begin{matrix}5\\4\end{matrix}\right)x+243\left(\begin{matrix}5\\5\end{matrix}\right)x^{0}
10

Any expression multiplied by 11 is equal to itself

(50)x5+3(51)x4+9(52)x3+27(53)x2+81(54)x+243(55)x0\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+81\left(\begin{matrix}5\\4\end{matrix}\right)x+243\left(\begin{matrix}5\\5\end{matrix}\right)x^{0}
11

Any expression (except 00 and \infty) to the power of 00 is equal to 11

(50)x5+3(51)x4+9(52)x3+27(53)x2+81(54)x+243(55)\left(\begin{matrix}5\\0\end{matrix}\right)x^{5}+3\left(\begin{matrix}5\\1\end{matrix}\right)x^{4}+9\left(\begin{matrix}5\\2\end{matrix}\right)x^{3}+27\left(\begin{matrix}5\\3\end{matrix}\right)x^{2}+81\left(\begin{matrix}5\\4\end{matrix}\right)x+243\left(\begin{matrix}5\\5\end{matrix}\right)
12

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
13

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
14

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
15

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
16

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
17

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
18

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
19

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
20

Calculate the binomial coefficient (51)\left(\begin{matrix}5\\1\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

35!(1!)(51)!x43\frac{5!}{\left(1!\right)\left(5-1\right)!}x^{4}
21

The factorial of 11 is 11

35!11x43\frac{5!}{1\cdot 1}x^{4}
22

The factorial of 55 is 120120

312011x43\frac{120}{1\cdot 1}x^{4}
23

Any expression multiplied by 11 is equal to itself

1203x4120\cdot 3x^{4}
24

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
25

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
26

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
27

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
28

Calculate the binomial coefficient (51)\left(\begin{matrix}5\\1\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

35!(1!)(51)!x43\frac{5!}{\left(1!\right)\left(5-1\right)!}x^{4}
29

The factorial of 11 is 11

35!11x43\frac{5!}{1\cdot 1}x^{4}
30

The factorial of 55 is 120120

312011x43\frac{120}{1\cdot 1}x^{4}
31

Any expression multiplied by 11 is equal to itself

1203x4120\cdot 3x^{4}
32

Calculate the binomial coefficient (52)\left(\begin{matrix}5\\2\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

95!(2!)(52)!x39\frac{5!}{\left(2!\right)\left(5-2\right)!}x^{3}
33

The factorial of 22 is 22

95!21x39\frac{5!}{2\cdot 1}x^{3}
34

The factorial of 55 is 120120

912021x39\frac{120}{2\cdot 1}x^{3}
35

Any expression multiplied by 11 is equal to itself

91202x39\frac{120}{2}x^{3}
36

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
37

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
38

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
39

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
40

Calculate the binomial coefficient (51)\left(\begin{matrix}5\\1\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

35!(1!)(51)!x43\frac{5!}{\left(1!\right)\left(5-1\right)!}x^{4}
41

The factorial of 11 is 11

35!11x43\frac{5!}{1\cdot 1}x^{4}
42

The factorial of 55 is 120120

312011x43\frac{120}{1\cdot 1}x^{4}
43

Any expression multiplied by 11 is equal to itself

1203x4120\cdot 3x^{4}
44

Calculate the binomial coefficient (52)\left(\begin{matrix}5\\2\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

95!(2!)(52)!x39\frac{5!}{\left(2!\right)\left(5-2\right)!}x^{3}
45

The factorial of 22 is 22

95!21x39\frac{5!}{2\cdot 1}x^{3}
46

The factorial of 55 is 120120

912021x39\frac{120}{2\cdot 1}x^{3}
47

Any expression multiplied by 11 is equal to itself

91202x39\frac{120}{2}x^{3}
48

Calculate the binomial coefficient (53)\left(\begin{matrix}5\\3\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

275!(3!)(53)!x227\frac{5!}{\left(3!\right)\left(5-3\right)!}x^{2}
49

The factorial of 33 is 66

275!61x227\frac{5!}{6\cdot 1}x^{2}
50

The factorial of 55 is 120120

2712061x227\frac{120}{6\cdot 1}x^{2}
51

Any expression multiplied by 11 is equal to itself

271206x227\frac{120}{6}x^{2}
52

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
53

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
54

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
55

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
56

Calculate the binomial coefficient (51)\left(\begin{matrix}5\\1\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

35!(1!)(51)!x43\frac{5!}{\left(1!\right)\left(5-1\right)!}x^{4}
57

The factorial of 11 is 11

35!11x43\frac{5!}{1\cdot 1}x^{4}
58

The factorial of 55 is 120120

312011x43\frac{120}{1\cdot 1}x^{4}
59

Any expression multiplied by 11 is equal to itself

1203x4120\cdot 3x^{4}
60

Calculate the binomial coefficient (52)\left(\begin{matrix}5\\2\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

95!(2!)(52)!x39\frac{5!}{\left(2!\right)\left(5-2\right)!}x^{3}
61

The factorial of 22 is 22

95!21x39\frac{5!}{2\cdot 1}x^{3}
62

The factorial of 55 is 120120

912021x39\frac{120}{2\cdot 1}x^{3}
63

Any expression multiplied by 11 is equal to itself

91202x39\frac{120}{2}x^{3}
64

Calculate the binomial coefficient (53)\left(\begin{matrix}5\\3\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

275!(3!)(53)!x227\frac{5!}{\left(3!\right)\left(5-3\right)!}x^{2}
65

The factorial of 33 is 66

275!61x227\frac{5!}{6\cdot 1}x^{2}
66

The factorial of 55 is 120120

2712061x227\frac{120}{6\cdot 1}x^{2}
67

Any expression multiplied by 11 is equal to itself

271206x227\frac{120}{6}x^{2}
68

Calculate the binomial coefficient (54)\left(\begin{matrix}5\\4\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

815!(4!)(54)!x81\frac{5!}{\left(4!\right)\left(5-4\right)!}x
69

The factorial of 44 is 2424

815!241x81\frac{5!}{24\cdot 1}x
70

The factorial of 55 is 120120

81120241x81\frac{120}{24\cdot 1}x
71

Any expression multiplied by 11 is equal to itself

8112024x81\frac{120}{24}x
72

Subtract the values 55 and 1-1

5!(0!)(5+0)!x5+3(5!)(1!)(4!)x4+9(5!)(2!)(52)!x3+27(5!)(3!)(53)!x2+81(5!)(4!)(54)!x+243(55)\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(5-2\right)!}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
73

Subtract the values 55 and 2-2

5!(0!)(5+0)!x5+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(53)!x2+81(5!)(4!)(54)!x+243(55)\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(5-3\right)!}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
74

Subtract the values 55 and 3-3

5!(0!)(5+0)!x5+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(54)!x+243(55)\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(5-4\right)!}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
75

Subtract the values 55 and 4-4

5!(0!)(5+0)!x5+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(55)\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
76

Add the values 55 and 00

5!(0!)(5!)x5+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(55)\frac{5!}{\left(0!\right)\left(5!\right)}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
77

Simplify the fraction 5!(0!)(5!)\frac{5!}{\left(0!\right)\left(5!\right)} by 5!5!

10!x5+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(55)\frac{1}{0!}x^{5}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
78

Multiply the fraction by the term

1x50!+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(55)\frac{1x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
79

Any expression multiplied by 11 is equal to itself

x50!+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(55)\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+243\left(\begin{matrix}5\\5\end{matrix}\right)
80

Calculate the binomial coefficient (50)\left(\begin{matrix}5\\0\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

5!(0!)(5+0)!x5\frac{5!}{\left(0!\right)\left(5+0\right)!}x^{5}
81

The factorial of 00 is 11

5!11x5\frac{5!}{1\cdot 1}x^{5}
82

The factorial of 55 is 120120

12011x5\frac{120}{1\cdot 1}x^{5}
83

Any expression multiplied by 11 is equal to itself

120x5120x^{5}
84

Calculate the binomial coefficient (51)\left(\begin{matrix}5\\1\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

35!(1!)(51)!x43\frac{5!}{\left(1!\right)\left(5-1\right)!}x^{4}
85

The factorial of 11 is 11

35!11x43\frac{5!}{1\cdot 1}x^{4}
86

The factorial of 55 is 120120

312011x43\frac{120}{1\cdot 1}x^{4}
87

Any expression multiplied by 11 is equal to itself

1203x4120\cdot 3x^{4}
88

Calculate the binomial coefficient (52)\left(\begin{matrix}5\\2\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

95!(2!)(52)!x39\frac{5!}{\left(2!\right)\left(5-2\right)!}x^{3}
89

The factorial of 22 is 22

95!21x39\frac{5!}{2\cdot 1}x^{3}
90

The factorial of 55 is 120120

912021x39\frac{120}{2\cdot 1}x^{3}
91

Any expression multiplied by 11 is equal to itself

91202x39\frac{120}{2}x^{3}
92

Calculate the binomial coefficient (53)\left(\begin{matrix}5\\3\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

275!(3!)(53)!x227\frac{5!}{\left(3!\right)\left(5-3\right)!}x^{2}
93

The factorial of 33 is 66

275!61x227\frac{5!}{6\cdot 1}x^{2}
94

The factorial of 55 is 120120

2712061x227\frac{120}{6\cdot 1}x^{2}
95

Any expression multiplied by 11 is equal to itself

271206x227\frac{120}{6}x^{2}
96

Calculate the binomial coefficient (54)\left(\begin{matrix}5\\4\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

815!(4!)(54)!x81\frac{5!}{\left(4!\right)\left(5-4\right)!}x
97

The factorial of 44 is 2424

815!241x81\frac{5!}{24\cdot 1}x
98

The factorial of 55 is 120120

81120241x81\frac{120}{24\cdot 1}x
99

Any expression multiplied by 11 is equal to itself

8112024x81\frac{120}{24}x
100

Calculate the binomial coefficient (55)\left(\begin{matrix}5\\5\end{matrix}\right) applying the formula: (nk)=n!k!(nk)!\left(\begin{matrix}n\\k\end{matrix}\right)=\frac{n!}{k!(n-k)!}

243(5!(5!)(55)!)243\left(\frac{5!}{\left(5!\right)\left(5-5\right)!}\right)
101

Simplify the fraction 5!(5!)(55)!\frac{5!}{\left(5!\right)\left(5-5\right)!} by 5!5!

243(1(55)!)243\left(\frac{1}{\left(5-5\right)!}\right)
102

Subtract the values 55 and 5-5

x50!+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+243(5!)(5!)(0!)\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243\left(5!\right)}{\left(5!\right)\left(0!\right)}
103

Simplify the fraction 243(5!)(5!)(0!)\frac{243\left(5!\right)}{\left(5!\right)\left(0!\right)} by 5!5!

x50!+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{0!}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
104

The factorial of 00 is 11

x51+3(5!)(1!)(4!)x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\left(5!\right)}{\left(1!\right)\left(4!\right)}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
105

The factorial of 11 is 11

x51+3(5!)124x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\left(5!\right)}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
106

The factorial of 55 is 120120

x51+3120124x4+9(5!)(2!)(3!)x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{\left(2!\right)\left(3!\right)}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
107

The factorial of 22 is 22

x51+3120124x4+9(5!)26x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\left(5!\right)}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
108

The factorial of 55 is 120120

x51+3120124x4+912026x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\cdot 120}{1\cdot 24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
109

Multiply 11 times 2424

x51+312024x4+912026x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{3\cdot 120}{24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
110

Multiply 33 times 120120

x51+36024x4+912026x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{9\cdot 120}{2\cdot 6}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
111

Multiply 22 times 66

x51+36024x4+912012x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{9\cdot 120}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
112

Multiply 99 times 120120

x51+36024x4+108012x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+\frac{360}{24}x^{4}+\frac{1080}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
113

Divide 360360 by 2424

x51+15x4+108012x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+15x^{4}+\frac{1080}{12}x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
114

Divide 10801080 by 1212

x51+15x4+90x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!\frac{x^{5}}{1}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
115

Any expression divided by one (11) is equal to that same expression

x5+15x4+90x3+27(5!)(3!)(2!)x2+81(5!)(4!)(1!)x+2430!x^{5}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{\left(3!\right)\left(2!\right)}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
116

The factorial of 33 is 66

x5+15x4+90x3+27(5!)62x2+81(5!)(4!)(1!)x+2430!x^{5}+15x^{4}+90x^{3}+\frac{27\left(5!\right)}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
117

The factorial of 55 is 120120

x5+15x4+90x3+2712062x2+81(5!)(4!)(1!)x+2430!x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{\left(4!\right)\left(1!\right)}x+\frac{243}{0!}
118

The factorial of 44 is 2424

x5+15x4+90x3+2712062x2+81(5!)241x+2430!x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\left(5!\right)}{24\cdot 1}x+\frac{243}{0!}
119

The factorial of 55 is 120120

x5+15x4+90x3+2712062x2+81120241x+2430!x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{0!}
120

The factorial of 00 is 11

x5+15x4+90x3+2712062x2+81120241x+2431x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{6\cdot 2}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}
121

Multiply 66 times 22

x5+15x4+90x3+2712012x2+81120241x+2431x^{5}+15x^{4}+90x^{3}+\frac{27\cdot 120}{12}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}
122

Multiply 2727 times 120120

x5+15x4+90x3+324012x2+81120241x+2431x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{81\cdot 120}{24\cdot 1}x+\frac{243}{1}
123

Multiply 2424 times 11

x5+15x4+90x3+324012x2+8112024x+2431x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{81\cdot 120}{24}x+\frac{243}{1}
124

Multiply 8181 times 120120

x5+15x4+90x3+324012x2+972024x+2431x^{5}+15x^{4}+90x^{3}+\frac{3240}{12}x^{2}+\frac{9720}{24}x+\frac{243}{1}
125

Divide 32403240 by 1212

x5+15x4+90x3+270x2+972024x+2431x^{5}+15x^{4}+90x^{3}+270x^{2}+\frac{9720}{24}x+\frac{243}{1}
126

Divide 97209720 by 2424

x5+15x4+90x3+270x2+405x+2431x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+\frac{243}{1}
127

Divide 243243 by 11

x5+15x4+90x3+270x2+405x+243x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243

Endgültige Antwort auf das Problem

x5+15x4+90x3+270x2+405x+243x^{5}+15x^{4}+90x^{3}+270x^{2}+405x+243

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!