👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Besondere Quotienten

Besondere Quotienten Rechner

Mit unserem Besondere Quotienten Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of special quotients. This solution was automatically generated by our smart calculator:

$\frac{m^2-n^2}{m+n}$

Simplify $\sqrt{m^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\frac{\left(m+\sqrt{1n^2}\right)\left(\sqrt{m^2}-\sqrt{1n^2}\right)}{m+n}$

Any expression multiplied by $1$ is equal to itself

$\frac{\left(m+\sqrt{n^2}\right)\left(\sqrt{m^2}-\sqrt{1n^2}\right)}{m+n}$

Simplify $\sqrt{n^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\frac{\left(m+n\right)\left(\sqrt{m^2}-\sqrt{1n^2}\right)}{m+n}$

Any expression multiplied by $1$ is equal to itself

$\frac{\left(m+n\right)\left(\sqrt{m^2}-\sqrt{n^2}\right)}{m+n}$

Simplify $\sqrt{m^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\frac{\left(m+n\right)\left(m-\sqrt{n^2}\right)}{m+n}$

Simplify $\sqrt{n^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\frac{\left(m+n\right)\left(m-n\right)}{m+n}$
2

Factor the difference of squares $m^2-n^2$ as the product of two conjugated binomials

$\frac{\left(m+n\right)\left(m-n\right)}{m+n}$
3

Simplify the fraction $\frac{\left(m+n\right)\left(m-n\right)}{m+n}$ by $m+n$

$m-n$

Endgültige Antwort auf das Problem

$m-n$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!