👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Ableitungen Von Trigonometrischen Funktionen

Ableitungen von trigonometrischen Funktionen Rechner

Mit unserem Ableitungen von trigonometrischen Funktionen Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of derivatives of trigonometric functions. This solution was automatically generated by our smart calculator:

$\frac{d}{dx}\cos\left(3x^2+x-5\right)$
2

The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if $f(x) = \cos(x)$, then $f'(x) = -\sin(x)\cdot D_x(x)$

$-\frac{d}{dx}\left(3x^2+x-5\right)\sin\left(3x^2+x-5\right)$

The derivative of the constant function ($-5$) is equal to zero

$-\left(\frac{d}{dx}\left(3x^2\right)+\frac{d}{dx}\left(x\right)\right)\sin\left(3x^2+x-5\right)$

The derivative of the linear function is equal to $1$

$-\left(\frac{d}{dx}\left(3x^2\right)+1\right)\sin\left(3x^2+x-5\right)$
3

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$-\left(\frac{d}{dx}\left(3x^2\right)+1\right)\sin\left(3x^2+x-5\right)$
4

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$-\left(3\frac{d}{dx}\left(x^2\right)+1\right)\sin\left(3x^2+x-5\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$6x^{\left(2-1\right)}$

Subtract the values $2$ and $-1$

$6x$
5

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$-\left(3\cdot 2x+1\right)\sin\left(3x^2+x-5\right)$
6

Multiply $3$ times $2$

$-\left(6x+1\right)\sin\left(3x^2+x-5\right)$

Endgültige Antwort auf das Problem

$-\left(6x+1\right)\sin\left(3x^2+x-5\right)$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!