👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Ableitungen Von Hyperbolischen Trigonometrischen Funktionen

Ableitungen von hyperbolischen trigonometrischen Funktionen Rechner

Mit unserem Ableitungen von hyperbolischen trigonometrischen Funktionen Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Hier zeigen wir Ihnen Schritt für Schritt ein gelöstes Beispiel für ableitungen von hyperbolischen trigonometrischen funktionen. Diese Lösung wurde automatisch von unserem intelligenten Taschenrechner generiert:

$\frac{d}{dx}\left(csch^2\left(4x^3+1\right)\right)$

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=2$ und $x=\mathrm{csch}\left(4x^3+1\right)$

$2\mathrm{csch}\left(4x^3+1\right)^{2-1}\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)$

Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=2$, $b=-1$ und $a+b=2-1$

$2\mathrm{csch}\left(4x^3+1\right)^{1}\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)$

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=2$ und $x=\mathrm{csch}\left(4x^3+1\right)$

$2\mathrm{csch}\left(4x^3+1\right)^{2-1}\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)$

Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=2$, $b=-1$ und $a+b=2-1$

$2\mathrm{csch}\left(4x^3+1\right)^{1}\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)$
2

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=2$ und $x=\mathrm{csch}\left(4x^3+1\right)$

$2\mathrm{csch}\left(4x^3+1\right)^{1}\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)$
3

Wenden Sie die Formel an: $x^1$$=x$

$2\frac{d}{dx}\left(\mathrm{csch}\left(4x^3+1\right)\right)\mathrm{csch}\left(4x^3+1\right)$
4

Anwendung der trigonometrischen Identität: $\frac{d}{dx}\left(\mathrm{csch}\left(\theta \right)\right)$$=-\frac{d}{dx}\left(\theta \right)\mathrm{csch}\left(\theta \right)\mathrm{coth}\left(\theta \right)$, wobei $x=4x^3+1$

$-2\frac{d}{dx}\left(4x^3+1\right)\mathrm{csch}\left(4x^3+1\right)\mathrm{csch}\left(4x^3+1\right)\mathrm{coth}\left(4x^3+1\right)$
5

Wenden Sie die Formel an: $x\cdot x$$=x^2$, wobei $x=\mathrm{csch}\left(4x^3+1\right)$

$-2\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(4x^3+1\right)\mathrm{coth}\left(4x^3+1\right)$

Wenden Sie die Formel an: $\frac{d}{dx}\left(c\right)$$=0$, wobei $c=1$

$-2\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(4x^3\right)\mathrm{coth}\left(4x^3+1\right)$
6

Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen

$-2\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(4x^3\right)\mathrm{coth}\left(4x^3+1\right)$

Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$

$-2\cdot 4\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(x^3\right)\mathrm{coth}\left(4x^3+1\right)$

Wenden Sie die Formel an: $ab$$=ab$, wobei $ab=-2\cdot 4\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(x^3\right)\mathrm{coth}\left(4x^3+1\right)$, $a=-2$ und $b=4$

$-8\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(x^3\right)\mathrm{coth}\left(4x^3+1\right)$
7

Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$

$-8\mathrm{csch}\left(4x^3+1\right)^2\frac{d}{dx}\left(x^3\right)\mathrm{coth}\left(4x^3+1\right)$

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=3$

$-24\mathrm{csch}\left(4x^3+1\right)^2x^{\left(3-1\right)}\mathrm{coth}\left(4x^3+1\right)$

Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=3$, $b=-1$ und $a+b=3-1$

$-24\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$
8

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=3$

$-8\cdot 3\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$
9

Wenden Sie die Formel an: $ab$$=ab$, wobei $ab=-8\cdot 3\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$, $a=-8$ und $b=3$

$-24\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$

Endgültige Antwort auf das Problem

$-24\mathrm{csch}\left(4x^3+1\right)^2x^{2}\mathrm{coth}\left(4x^3+1\right)$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!