Übung
$x^{3}+3x^{2}-2x-4$
Schritt-für-Schritt-Lösung
Learn how to solve gemeinsamer monomialer faktor problems step by step online. x^3+3x^2-2x+-4. Wir können das Polynom x^3+3x^2-2x-4 mit Hilfe des Satzes von der rationalen Wurzel faktorisieren, der garantiert, dass es für ein Polynom der Form a_nx^n+a_{n-1}x^{n-1}+\dots+a_0 eine rationale Wurzel der Form \pm\frac{p}{q} gibt, wobei p zu den Teilern des konstanten Terms a_0 und q zu den Teilern des führenden Koeffizienten a_n gehört. Listen Sie alle Divisoren p des konstanten Terms a_0 auf, der gleich ist -4. Als Nächstes sind alle Teiler des führenden Koeffizienten a_n aufzulisten, der gleich ist 1. Die möglichen Wurzeln \pm\frac{p}{q} des Polynoms x^3+3x^2-2x-4 lauten dann. Wir haben alle möglichen Wurzeln ausprobiert und festgestellt, dass -1 eine Wurzel des Polynoms ist. Wenn wir sie im Polynom auswerten, erhalten wir 0 als Ergebnis.
Endgültige Antwort auf das Problem
$\left(x^{2}+2x-4\right)\left(x+1\right)$