Übung
$x^{10}-n^{10}-x-n$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. x^10-n^10-x-n. Simplify \sqrt{x^{10}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 10 and n equals \frac{1}{2}. Wenden Sie die Formel an: 1x=x, wobei x=n^{10}. Simplify \sqrt{n^{10}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 10 and n equals \frac{1}{2}. Wenden Sie die Formel an: 1x=x, wobei x=n^{10}.
Endgültige Antwort auf das Problem
$\left(\sqrt[3]{x^{5}+n^{5}}\sqrt[3]{x^{5}-n^{5}}+\sqrt[3]{x+n}\right)\left(\sqrt[3]{\left(x^{5}+n^{5}\right)^{2}}\sqrt[3]{\left(x^{5}-n^{5}\right)^{2}}-\sqrt[3]{x^{5}+n^{5}}\sqrt[3]{x^{5}-n^{5}}\sqrt[3]{x+n}+\sqrt[3]{\left(x+n\right)^{2}}\right)$