Übung
$x\sqrt{x\sqrt{x\sqrt{x}}}$
Schritt-für-Schritt-Lösung
Learn how to solve äquivalent ausdrücke problems step by step online. x(x(xx^(1/2))^(1/2))^(1/2). Wenden Sie die Formel an: x\cdot x^n=x^{\left(n+1\right)}, wobei x^nx=x\sqrt{x}, x^n=\sqrt{x} und n=\frac{1}{2}. Simplify \sqrt{\sqrt{x^{3}}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{3}{2} and n equals \frac{1}{2}. Wenden Sie die Formel an: x\cdot x^n=x^{\left(n+1\right)}, wobei x^nx=x\cdot x^{\frac{3}{2}\cdot \frac{1}{2}}, x^n=x^{\frac{3}{2}\cdot \frac{1}{2}} und n=\frac{3}{2}\cdot \frac{1}{2}. Simplify \sqrt{x^{\left(\frac{3}{2}\cdot \frac{1}{2}+1\right)}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{3}{2}\cdot \frac{1}{2}+1 and n equals \frac{1}{2}.
x(x(xx^(1/2))^(1/2))^(1/2)
Endgültige Antwort auf das Problem
$\sqrt[8]{x^{15}}$