Übung
$s=\left(3x+4y\right)^2-\left(3\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Solve the equation s=(3x+4y)^2-3. Wenden Sie die Formel an: a=b\to b=a, wobei a=s und b=\left(3x+4y\right)^2-3. Wenden Sie die Formel an: x+a=b\to x=b-a, wobei a=-3, b=s, x+a=b=\left(3x+4y\right)^2-3=s, x=\left(3x+4y\right)^2 und x+a=\left(3x+4y\right)^2-3. Wenden Sie die Formel an: x^a=b\to \left(x^a\right)^{\frac{1}{a}}=\pm b^{\frac{1}{a}}, wobei a=2, b=s+3 und x=3x+4y. Wenden Sie die Formel an: \left(x^a\right)^b=x, wobei a=2, b=1, x^a^b=\sqrt{\left(3x+4y\right)^2}, x=3x+4y und x^a=\left(3x+4y\right)^2.
Solve the equation s=(3x+4y)^2-3
Endgültige Antwort auf das Problem
$y=\frac{-3x+\sqrt{s+3}}{4},\:y=\frac{-\left(3x+\sqrt{s+3}\right)}{4}$