Lösen: $in\frac{dy}{dx}+2x^2inx=0$
Übung
$in\:y\frac{dy}{dx}+2x^2in\:x$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. indy/dx+2x^2inx=0. Wenden Sie die Formel an: x\cdot x^n=x^{\left(n+1\right)}, wobei x^nx=2x^2inx, x^n=x^2 und n=2. Wenden Sie die Formel an: x+a=b\to x=b-a, wobei a=2x^{3}in, b=0, x+a=b=in\frac{dy}{dx}+2x^{3}in=0, x=in\frac{dy}{dx} und x+a=in\frac{dy}{dx}+2x^{3}in. Wenden Sie die Formel an: mx=nx\to m=n, wobei x=i, m=n\frac{dy}{dx} und n=-2x^{3}n. Gruppieren Sie die Terme der Differentialgleichung. Verschieben Sie die Terme der Variablen y auf die linke Seite und die Terme der Variablen x auf die rechte Seite der Gleichung.
Endgültige Antwort auf das Problem
$y=-\frac{1}{2}x^{4}n+C_0$