Übung
$64x^3+128x^2-25x-50$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. 64x^3+128x^2-25x+-50. Wir können das Polynom 64x^3+128x^2-25x-50 mit Hilfe des Satzes von der rationalen Wurzel faktorisieren, der garantiert, dass es für ein Polynom der Form a_nx^n+a_{n-1}x^{n-1}+\dots+a_0 eine rationale Wurzel der Form \pm\frac{p}{q} gibt, wobei p zu den Teilern des konstanten Terms a_0 und q zu den Teilern des führenden Koeffizienten a_n gehört. Listen Sie alle Divisoren p des konstanten Terms a_0 auf, der gleich ist -50. Als Nächstes sind alle Teiler des führenden Koeffizienten a_n aufzulisten, der gleich ist 64. Die möglichen Wurzeln \pm\frac{p}{q} des Polynoms 64x^3+128x^2-25x-50 lauten dann. Wir haben alle möglichen Wurzeln ausprobiert und festgestellt, dass -2 eine Wurzel des Polynoms ist. Wenn wir sie im Polynom auswerten, erhalten wir 0 als Ergebnis.
Endgültige Antwort auf das Problem
$\left(8x+5\right)\left(x+2\right)\left(8x-5\right)$