Übung
$196m^6-196n^{12}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. 196m^6-196n^12. Faktorisieren Sie das Polynom 196m^6-196n^{12} mit seinem größten gemeinsamen Faktor (GCF): 196. Wenden Sie die Formel an: a+b=\left(\sqrt[3]{a}+\sqrt[3]{\left|b\right|}\right)\left(\sqrt[3]{a^{2}}-\sqrt[3]{a}\sqrt[3]{\left|b\right|}+\sqrt[3]{\left|b\right|^{2}}\right), wobei a=m^{6} und b=-n^{12}. Simplify \sqrt[3]{m^{6}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 6 and n equals \frac{1}{3}. Wenden Sie die Formel an: \frac{a}{b}c=\frac{ca}{b}, wobei a=1, b=3, c=6, a/b=\frac{1}{3} und ca/b=6\cdot \left(\frac{1}{3}\right).
Endgültige Antwort auf das Problem
$196\left(m^{2}+n^{4}\right)\left(m^{4}-m^{2}n^{4}+n^{8}\right)$