Übung
$1\sqrt{a^9}\sqrt[3]{\left(b+1\right)}^5-81\sqrt{a}\sqrt[3]{\left(b+1\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve äquivalent ausdrücke problems step by step online. 1a^9^(1/2)(b+1)^(1/3)^5-81a^(1/2)(b+1)^(1/3). Wenden Sie die Formel an: 1x=x, wobei x=\sqrt{a^9}\left(\sqrt[3]{b+1}\right)^5. Simplify \sqrt{a^9} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 9 and n equals \frac{1}{2}. Wenden Sie die Formel an: \frac{a}{b}c=\frac{ca}{b}, wobei a=1, b=2, c=9, a/b=\frac{1}{2} und ca/b=9\cdot \left(\frac{1}{2}\right). Simplify \left(\sqrt[3]{b+1}\right)^5 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals \frac{1}{3} and n equals 5.
1a^9^(1/2)(b+1)^(1/3)^5-81a^(1/2)(b+1)^(1/3)
Endgültige Antwort auf das Problem
$\sqrt{a^{9}}\sqrt[3]{\left(b+1\right)^{5}}-81\sqrt{a}\sqrt[3]{b+1}$