Übung
$1+\frac{1}{16\sqrt{x^3}}+\frac{1}{16\sqrt{x^5}}+\frac{-\frac{1}{8}}{8x^2}$
Schritt-für-Schritt-Lösung
Learn how to solve kombinieren gleicher begriffe problems step by step online. Simplify 1+1/(16x^3^(1/2))1/(16x^5^(1/2))(-1/8)/(8x^2). Simplify \sqrt{x^3} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 3 and n equals \frac{1}{2}. Wenden Sie die Formel an: \frac{a}{b}c=\frac{ca}{b}, wobei a=1, b=2, c=3, a/b=\frac{1}{2} und ca/b=3\cdot \left(\frac{1}{2}\right). Simplify \sqrt{x^5} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 5 and n equals \frac{1}{2}. Simplify \sqrt{x^3} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 3 and n equals \frac{1}{2}.
Simplify 1+1/(16x^3^(1/2))1/(16x^5^(1/2))(-1/8)/(8x^2)
Endgültige Antwort auf das Problem
$1+\frac{1}{16\sqrt{x^{3}}}+\frac{1}{16\sqrt{x^{5}}}+\frac{-1}{64x^2}$