Wenden Sie die Formel an: $\frac{a^n}{a}$$=a^{\left(n-1\right)}$, wobei $a^n/a=\frac{\sqrt{x}}{x}$, $a^n=\sqrt{x}$, $a=x$ und $n=\frac{1}{2}$
Wenden Sie die Formel an: $\int x^ndx$$=\frac{x^{\left(n+1\right)}}{n+1}+C$, wobei $n=-\frac{1}{2}$
Vereinfachen Sie den Ausdruck
Da das Integral, das wir lösen, ein unbestimmtes Integral ist, müssen wir am Ende der Integration die Integrationskonstante hinzufügen $C$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!