Lösen: $\lim_{t\to-11}\left(\frac{t+11}{\sqrt{4t+80}-\sqrt{3t+69}}\right)$
Übung
$\lim_{x\to-11}\left(\frac{t+11}{\sqrt{4t+80}-\sqrt{3t+69}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve besondere produkte problems step by step online. (t)->(-11)lim((t+11)/((4t+80)^(1/2)-(3t+69)^(1/2))). Wenden Sie die Formel an: \lim_{x\to c}\left(\frac{a}{b}\right)=\lim_{x\to c}\left(\frac{a}{b}\frac{conjugate\left(b\right)}{conjugate\left(b\right)}\right), wobei a=t+11, b=\sqrt{4t+80}-\sqrt{3t+69}, c=-11 und x=t. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=t+11, b=\sqrt{4t+80}-\sqrt{3t+69}, c=\sqrt{4t+80}+\sqrt{3t+69}, a/b=\frac{t+11}{\sqrt{4t+80}-\sqrt{3t+69}}, f=\sqrt{4t+80}+\sqrt{3t+69}, c/f=\frac{\sqrt{4t+80}+\sqrt{3t+69}}{\sqrt{4t+80}+\sqrt{3t+69}} und a/bc/f=\frac{t+11}{\sqrt{4t+80}-\sqrt{3t+69}}\frac{\sqrt{4t+80}+\sqrt{3t+69}}{\sqrt{4t+80}+\sqrt{3t+69}}. Wenden Sie die Formel an: \left(a+b\right)\left(a+c\right)=a^2-b^2, wobei a=\sqrt{4t+80}, b=\sqrt{3t+69}, c=-\sqrt{3t+69}, a+c=\sqrt{4t+80}+\sqrt{3t+69} und a+b=\sqrt{4t+80}-\sqrt{3t+69}. Die Kombination gleicher Begriffe 4t und -3t.
(t)->(-11)lim((t+11)/((4t+80)^(1/2)-(3t+69)^(1/2)))
Endgültige Antwort auf das Problem
$12$