Übung
$\lim_{x\to\infty}\left(x+1\right)\left(\frac{-1}{\sqrt{2}}\right)^{\left(x+2\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve besondere produkte problems step by step online. (x)->(unendlich)lim((x+1)(-1/(2^(1/2)))^(x+2)). Multiplizieren Sie den Einzelterm {\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)} mit jedem Term des Polynoms \left(x+1\right). Wenden Sie die Formel an: \lim_{x\to c}\left(a\right)=\lim_{x\to c}\left(a\frac{conjugate\left(numerator\left(a\right)\right)}{conjugate\left(numerator\left(a\right)\right)}\right), wobei a=x{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}+{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)} und c=\infty . Wenden Sie die Formel an: \lim_{x\to c}\left(a\right)=\lim_{x\to c}\left(a\right), wobei a=\left(x{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}+{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}\right)\frac{x{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}-{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}}{x{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}-{\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}} und c=\infty . Simplify \left({\left(\left(\frac{-1}{\sqrt{2}}\right)\right)}^{\left(x+2\right)}\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals x+2 and n equals 2.
(x)->(unendlich)lim((x+1)(-1/(2^(1/2)))^(x+2))
Endgültige Antwort auf das Problem
$c-f$