Wenden Sie die Formel an: $\frac{a^m}{a^n}$$=\frac{1}{a^{\left(n-m\right)}}$, wobei $a=x$, $m=2$ und $n=3$
Wenden Sie die Formel an: $x^1$$=x$
Wenden Sie die Formel an: $\lim_{x\to c}\left(\frac{a}{b}\right)$$=\lim_{x\to c}\left(a\right)\lim_{x\to c}\left(\frac{1}{b}\right)$, wobei $a=\sin\left(x\right)$, $b=x$ und $c=\infty $
Berechnen Sie den Grenzwert $\lim_{x\to\infty }\left(\frac{1}{x}\right)$, indem Sie alle Vorkommen von $x$ durch $\infty $
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!