Übung
$\lim_{x\to\infty}\left(\frac{\sqrt{x}-7x+2\sqrt[5]{x^2}}{2x-8x^{\frac{2}{3}}-\sqrt[3]{x}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (x)->(unendlich)lim((x^(1/2)-7x2x^2^(1/5))/(2x-8x^(2/3)-x^(1/3))). Simplify \sqrt[5]{x^2} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals \frac{1}{5}. Wenden Sie die Formel an: \lim_{x\to c}\left(\frac{a}{b}\right)=\lim_{x\to c}\left(\frac{\frac{a}{sign\left(c\right)fgrow\left(b\right)}}{\frac{b}{sign\left(c\right)fgrow\left(b\right)}}\right), wobei a=\sqrt{x}-7x+2\sqrt[5]{x^{2}}, b=2x-8\sqrt[3]{x^{2}}-\sqrt[3]{x}, c=\infty , a/b=\frac{\sqrt{x}-7x+2\sqrt[5]{x^{2}}}{2x-8\sqrt[3]{x^{2}}-\sqrt[3]{x}} und x->c=x\to\infty . Wenden Sie die Formel an: \lim_{x\to c}\left(\frac{a}{b}\right)=\lim_{x\to c}\left(\frac{radicalfrac\left(a\right)}{radicalfrac\left(b\right)}\right), wobei a=\frac{\sqrt{x}-7x+2\sqrt[5]{x^{2}}}{\sqrt[3]{x^{2}}}, b=\frac{2x-8\sqrt[3]{x^{2}}-\sqrt[3]{x}}{\sqrt[3]{x^{2}}} und c=\infty . Wenden Sie die Formel an: \lim_{x\to c}\left(\frac{a}{b}\right)=\lim_{x\to c}\left(\frac{splitfrac\left(a\right)}{splitfrac\left(b\right)}\right), wobei a=\sqrt[3]{\left(\frac{x}{\sqrt{\left(\sqrt{x}-7x+2\sqrt[5]{x^{2}}\right)^{3}}}\right)^{2}}, b=\sqrt[3]{\left(\frac{x}{\sqrt{\left(2x-8\sqrt[3]{x^{2}}-\sqrt[3]{x}\right)^{3}}}\right)^{2}} und c=\infty .
(x)->(unendlich)lim((x^(1/2)-7x2x^2^(1/5))/(2x-8x^(2/3)-x^(1/3)))
Endgültige Antwort auf das Problem
unbestimmt