Übung
$\left(x^3-7x^2+2\right):\left(x-2\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-7x^2+2$ durch $x-2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-2;}{\phantom{;}x^{2}-5x\phantom{;}-10\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-2\overline{\smash{)}\phantom{;}x^{3}-7x^{2}\phantom{-;x^n}+2\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-2;}\underline{-x^{3}+2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}+2x^{2};}-5x^{2}\phantom{-;x^n}+2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-2-;x^n;}\underline{\phantom{;}5x^{2}-10x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}5x^{2}-10x\phantom{;}-;x^n;}-10x\phantom{;}+2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-2-;x^n-;x^n;}\underline{\phantom{;}10x\phantom{;}-20\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}10x\phantom{;}-20\phantom{;}\phantom{;}-;x^n-;x^n;}-18\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-5x-10+\frac{-18}{x-2}$
Endgültige Antwort auf das Problem
$x^{2}-5x-10+\frac{-18}{x-2}$