Übung
$\left(x^3+3x^2-2x+1\right):\left(x+1\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3+3x^2-2x+1$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{2}+2x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}+3x^{2}-2x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-x^{2};}\phantom{;}2x^{2}-2x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{-2x^{2}-2x\phantom{;}\phantom{-;x^n}}\\\phantom{;-2x^{2}-2x\phantom{;}-;x^n;}-4x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}5\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+2x-4+\frac{5}{x+1}$
Endgültige Antwort auf das Problem
$x^{2}+2x-4+\frac{5}{x+1}$