Übung
$\left(n^{4}\right)^{5}\cdot\left(n^{-3}\right)^{-4}$
Schritt-für-Schritt-Lösung
Learn how to solve äquivalent ausdrücke problems step by step online. n^4^5n^(-3)^(-4). Simplify \left(n^4\right)^5 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 4 and n equals 5. Wenden Sie die Formel an: ab=ab, wobei ab=4\cdot 5, a=4 und b=5. Simplify \left(n^{-3}\right)^{-4} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals -3 and n equals -4. Simplify \left(n^4\right)^5 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 4 and n equals 5.
Endgültige Antwort auf das Problem
$n^{32}$