Übung
$\left(m^{5}+3m^{2}-6-2m^{4}\right):\left(m+1\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $m^5+3m^2-6-2m^4$ durch $m+1$
$\begin{array}{l}\phantom{\phantom{;}m\phantom{;}+1;}{\phantom{;}m^{4}-3m^{3}+3m^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;}m\phantom{;}+1\overline{\smash{)}\phantom{;}m^{5}-2m^{4}\phantom{-;x^n}+3m^{2}\phantom{-;x^n}-6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}m\phantom{;}+1;}\underline{-m^{5}-m^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-m^{5}-m^{4};}-3m^{4}\phantom{-;x^n}+3m^{2}\phantom{-;x^n}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}m\phantom{;}+1-;x^n;}\underline{\phantom{;}3m^{4}+3m^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}3m^{4}+3m^{3}-;x^n;}\phantom{;}3m^{3}+3m^{2}\phantom{-;x^n}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}m\phantom{;}+1-;x^n-;x^n;}\underline{-3m^{3}-3m^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-3m^{3}-3m^{2}-;x^n-;x^n;}-6\phantom{;}\phantom{;}\\\end{array}$
$m^{4}-3m^{3}+3m^{2}+\frac{-6}{m+1}$
Endgültige Antwort auf das Problem
$m^{4}-3m^{3}+3m^{2}+\frac{-6}{m+1}$