Übung
$\left(3\:x^3-7x+4\right):\left(x^2-x+1\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^3-7x+4$ durch $x^2-x+1$
$\begin{array}{l}\phantom{\phantom{;}x^{2}-x\phantom{;}+1;}{\phantom{;}3x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}x^{2}-x\phantom{;}+1\overline{\smash{)}\phantom{;}3x^{3}\phantom{-;x^n}-7x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{2}-x\phantom{;}+1;}\underline{-3x^{3}+3x^{2}-3x\phantom{;}\phantom{-;x^n}}\\\phantom{-3x^{3}+3x^{2}-3x\phantom{;};}\phantom{;}3x^{2}-10x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-x\phantom{;}+1-;x^n;}\underline{-3x^{2}+3x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{;-3x^{2}+3x\phantom{;}-3\phantom{;}\phantom{;}-;x^n;}-7x\phantom{;}+1\phantom{;}\phantom{;}\\\end{array}$
$3x+3+\frac{-7x+1}{x^2-x+1}$
Endgültige Antwort auf das Problem
$3x+3+\frac{-7x+1}{x^2-x+1}$