Übung
$\left(2y^5+2y^4-3y^3-15y^2+18\right)entre\left(2y^2-3\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2y^5+2y^4-3y^3-15y^2+18$ durch $2y^2-3$
$\begin{array}{l}\phantom{\phantom{;}2y^{2}-3;}{\phantom{;}y^{3}+y^{2}\phantom{-;x^n}-6\phantom{;}\phantom{;}}\\\phantom{;}2y^{2}-3\overline{\smash{)}\phantom{;}2y^{5}+2y^{4}-3y^{3}-15y^{2}\phantom{-;x^n}+18\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2y^{2}-3;}\underline{-2y^{5}\phantom{-;x^n}+3y^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2y^{5}+3y^{3};}\phantom{;}2y^{4}\phantom{-;x^n}-15y^{2}\phantom{-;x^n}+18\phantom{;}\phantom{;}\\\phantom{\phantom{;}2y^{2}-3-;x^n;}\underline{-2y^{4}\phantom{-;x^n}+3y^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-2y^{4}+3y^{2}-;x^n;}-12y^{2}\phantom{-;x^n}+18\phantom{;}\phantom{;}\\\phantom{\phantom{;}2y^{2}-3-;x^n-;x^n;}\underline{\phantom{;}12y^{2}\phantom{-;x^n}-18\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}12y^{2}-18\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$y^{3}+y^{2}-6$