Übung
$\left(2x^3-6x^2+5x\:-8\right):\left(x+1\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^3-6x^2+5x-8$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}2x^{2}-8x\phantom{;}+13\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}2x^{3}-6x^{2}+5x\phantom{;}-8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-2x^{3}-2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{3}-2x^{2};}-8x^{2}+5x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}8x^{2}+8x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}8x^{2}+8x\phantom{;}-;x^n;}\phantom{;}13x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-13x\phantom{;}-13\phantom{;}\phantom{;}}\\\phantom{;;-13x\phantom{;}-13\phantom{;}\phantom{;}-;x^n-;x^n;}-21\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}-8x+13+\frac{-21}{x+1}$
Endgültige Antwort auf das Problem
$2x^{2}-8x+13+\frac{-21}{x+1}$