Übung
$\left(-\frac{2}{5}m^6n^3-\frac{4}{3}m^2n^5\right)^2^2$
Schritt-für-Schritt-Lösung
Learn how to solve besondere produkte problems step by step online. (-2/5m^6n^3-4/3m^2n^5)^2^2. Simplify \left(\left(-\frac{2}{5}m^6n^3-\frac{4}{3}m^2n^5\right)^2\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals 2. Wenden Sie die Formel an: \left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4, wobei a=-\frac{2}{5}m^6n^3, b=-\frac{4}{3}m^2n^5 und a+b=-\frac{2}{5}m^6n^3-\frac{4}{3}m^2n^5. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n, wobei a=m^2, b=\left(-\frac{4}{3}\right)n^5 und n=3. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n.
(-2/5m^6n^3-4/3m^2n^5)^2^2
Endgültige Antwort auf das Problem
$m^{24}\left(-\frac{2}{5}n^3\right)^4-\frac{16}{3}m^{20}\left(\left(-\frac{2}{5}\right)n^3\right)^3n^5+6m^{16}\left(\left(-\frac{2}{5}\right)n^3\right)^2\left(\left(-\frac{4}{3}\right)n^5\right)^2-\frac{8}{5}m^{12}n^3\left(\left(-\frac{4}{3}\right)n^5\right)^3+m^{8}\left(-\frac{4}{3}n^5\right)^4$