Übung
$\left(\frac{8}{w^3}+\frac{1}{z^2}\right)\left(\frac{8}{w^3}-\frac{5}{z^2}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve besondere produkte problems step by step online. Solve the product (8/(w^3)+1/(z^2))(8/(w^3)+-5/(z^2)). Wenden Sie die Formel an: x\left(a+b\right)=xa+xb, wobei a=\frac{8}{w^3}, b=\frac{1}{z^2}, x=\frac{8}{w^3}+\frac{-5}{z^2} und a+b=\frac{8}{w^3}+\frac{1}{z^2}. Wenden Sie die Formel an: x\left(a+b\right)=xa+xb, wobei a=\frac{8}{w^3}, b=\frac{-5}{z^2}, x=\frac{8}{w^3} und a+b=\frac{8}{w^3}+\frac{-5}{z^2}. Wenden Sie die Formel an: x\left(a+b\right)=xa+xb, wobei a=\frac{8}{w^3}, b=\frac{-5}{z^2}, x=\frac{1}{z^2} und a+b=\frac{8}{w^3}+\frac{-5}{z^2}. Wenden Sie die Formel an: \left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}, wobei a=8, b=w^3 und n=2.
Solve the product (8/(w^3)+1/(z^2))(8/(w^3)+-5/(z^2))
Endgültige Antwort auf das Problem
$\frac{64}{w^{6}}+\frac{-32}{w^3z^2}+\frac{-5}{z^{4}}$