Übung
$\left(\frac{3}{2}pq^2-\frac{2}{3}pr^2\right)^4$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (3/2pq^2-2/3pr^2)^4. Wenden Sie die Formel an: \left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4, wobei a=\frac{3}{2}pq^2, b=-\frac{2}{3}pr^2 und a+b=\frac{3}{2}pq^2-\frac{2}{3}pr^2. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n, wobei a=\frac{3}{2}, b=pq^2 und n=2. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n. Wenden Sie die Formel an: \frac{a}{b}c=\frac{ca}{b}, wobei a=9, b=4, c=6, a/b=\frac{9}{4} und ca/b=6\cdot \left(\frac{9}{4}\right)p^2q^{4}p^2\left(-\frac{2}{3}r^2\right)^2.
Endgültige Antwort auf das Problem
$\frac{81}{16}p^4q^{8}-9p^{4}q^{6}r^2+\frac{27}{2}p^{4}q^{4}\left(-\frac{2}{3}r^2\right)^2+6p^{4}q^2\left(-\frac{2}{3}r^2\right)^3+p^4\left(-\frac{2}{3}r^2\right)^4$