Übung
$\left(\frac{2x^5-2x^4-3x^3+3x^2+3x-3}{2x^4-3x^2+3}\right)$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^5-2x^4-3x^3+3x^2+3x-3$ durch $2x^4-3x^2+3$
$\begin{array}{l}\phantom{\phantom{;}2x^{4}-3x^{2}+3;}{\phantom{;}x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;}2x^{4}-3x^{2}+3\overline{\smash{)}\phantom{;}2x^{5}-2x^{4}-3x^{3}+3x^{2}+3x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x^{4}-3x^{2}+3;}\underline{-2x^{5}\phantom{-;x^n}+3x^{3}\phantom{-;x^n}-3x\phantom{;}\phantom{-;x^n}}\\\phantom{-2x^{5}+3x^{3}-3x\phantom{;};}-2x^{4}\phantom{-;x^n}+3x^{2}\phantom{-;x^n}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x^{4}-3x^{2}+3-;x^n;}\underline{\phantom{;}2x^{4}\phantom{-;x^n}-3x^{2}\phantom{-;x^n}+3\phantom{;}\phantom{;}}\\\phantom{;\phantom{;}2x^{4}-3x^{2}+3\phantom{;}\phantom{;}-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$x-1$